Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Dairy Sci ; 105(12): 9297-9326, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36270879

RESUMEN

Ruminant livestock are an important source of anthropogenic methane (CH4). Decreasing the emissions of enteric CH4 from ruminant production is strategic to limit the global temperature increase to 1.5°C by 2050. Research in the area of enteric CH4 mitigation has grown exponentially in the last 2 decades, with various strategies for enteric CH4 abatement being investigated: production intensification, dietary manipulation (including supplementation and processing of concentrates and lipids, and management of forage and pastures), rumen manipulation (supplementation of ionophores, 3-nitrooxypropanol, macroalgae, alternative electron acceptors, and phytochemicals), and selection of low-CH4-producing animals. Other enteric CH4 mitigation strategies are at earlier stages of research but rapidly developing. Herein, we discuss and analyze the current status of available enteric CH4 mitigation strategies with an emphasis on opportunities and barriers to their implementation in confined and partial grazing production systems, and in extensive and fully grazing production systems. For each enteric CH4 mitigation strategy, we discuss its effectiveness to decrease total CH4 emissions and emissions on a per animal product basis, safety issues, impacts on the emissions of other greenhouse gases, as well as other economic, regulatory, and societal aspects that are key to implementation. Most research has been conducted with confined animals, and considerably more research is needed to develop, adapt, and evaluate antimethanogenic strategies for grazing systems. In general, few options are currently available for extensive production systems without feed supplementation. Continuous research and development are needed to develop enteric CH4 mitigation strategies that are locally applicable. Information is needed to calculate carbon footprints of interventions on a regional basis to evaluate the impact of mitigation strategies on net greenhouse gas emissions. Economically affordable enteric CH4 mitigation solutions are urgently needed. Successful implementation of safe and effective antimethanogenic strategies will also require delivery mechanisms and adequate technical support for producers, as well as consumer involvement and acceptance. The most appropriate metrics should be used in quantifying the overall climate outcomes associated with mitigation of enteric CH4 emissions. A holistic approach is required, and buy-in is needed at all levels of the supply chain.


Asunto(s)
Gases de Efecto Invernadero , Metano , Animales , Metano/análisis , Biodiversidad , Temperatura , Rumiantes
2.
J Anim Sci ; 100(7)2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35657151

RESUMEN

The contribution of greenhouse gas (GHG) emissions from ruminant production systems varies between countries and between regions within individual countries. The appropriate quantification of GHG emissions, specifically methane (CH4), has raised questions about the correct reporting of GHG inventories and, perhaps more importantly, how best to mitigate CH4 emissions. This review documents existing methods and methodologies to measure and estimate CH4 emissions from ruminant animals and the manure produced therein over various scales and conditions. Measurements of CH4 have frequently been conducted in research settings using classical methodologies developed for bioenergetic purposes, such as gas exchange techniques (respiration chambers, headboxes). While very precise, these techniques are limited to research settings as they are expensive, labor-intensive, and applicable only to a few animals. Head-stalls, such as the GreenFeed system, have been used to measure expired CH4 for individual animals housed alone or in groups in confinement or grazing. This technique requires frequent animal visitation over the diurnal measurement period and an adequate number of collection days. The tracer gas technique can be used to measure CH4 from individual animals housed outdoors, as there is a need to ensure low background concentrations. Micrometeorological techniques (e.g., open-path lasers) can measure CH4 emissions over larger areas and many animals, but limitations exist, including the need to measure over more extended periods. Measurement of CH4 emissions from manure depends on the type of storage, animal housing, CH4 concentration inside and outside the boundaries of the area of interest, and ventilation rate, which is likely the variable that contributes the greatest to measurement uncertainty. For large-scale areas, aircraft, drones, and satellites have been used in association with the tracer flux method, inverse modeling, imagery, and LiDAR (Light Detection and Ranging), but research is lagging in validating these methods. Bottom-up approaches to estimating CH4 emissions rely on empirical or mechanistic modeling to quantify the contribution of individual sources (enteric and manure). In contrast, top-down approaches estimate the amount of CH4 in the atmosphere using spatial and temporal models to account for transportation from an emitter to an observation point. While these two estimation approaches rarely agree, they help identify knowledge gaps and research requirements in practice.


There is a need to accurately and precisely quantify greenhouse gas (GHG) emissions, specifically methane (CH4), to ensure correct reporting of GHG inventories and, perhaps more importantly, determine how to best mitigate CH4 emissions. The objective of this study was to review existing methods and methodologies to quantify and estimate CH4 emissions from ruminants. Historically, most techniques were developed for specific purposes that may limit their widespread use on commercial farms and for inventory purposes and typically required frequent calibration and equipment maintenance. Whole animal and head respiration chambers, spot sampling techniques, and tracer gas methods can be used to measure enteric CH4 from individual animals, but each technique has its own inherent limitations. The measurement of CH4 emissions from manure depends on the type of storage, animal housing, CH4 concentration inside and outside the boundaries of the area of interest, and ventilation rate, which is likely the most complex variable creating many uncertainties. For large-scale areas, aircraft, drones, and satellites have been used in association with the tracer flux method, inverse modeling, imagery, and LiDAR (Light Detection and Ranging), but research is lagging in validating these methods. Bottom-up approaches to estimating CH4 emissions rely on empirical or mechanistic modeling to quantify the contribution of individual sources. Top-down approaches estimate the amount of CH4 in the atmosphere using spatial and temporal models to account for transportation from an emitter to an observation point.


Asunto(s)
Gases de Efecto Invernadero , Metano , Animales , Ingestión de Alimentos , Estiércol/análisis , Metano/análisis , Rumiantes
3.
Sci Total Environ ; 825: 153982, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35202679

RESUMEN

Successful mitigation efforts entail accurate estimation of on-farm emission and prediction models can be an alternative to current laborious and costly in vivo CH4 measurement techniques. This study aimed to: (1) collate a database of individual dairy cattle CH4 emission data from studies conducted in the Latin America and Caribbean (LAC) region; (2) identify key variables for predicting CH4 production (g d-1) and yield [g kg-1 of dry matter intake (DMI)]; (3) develop and cross-validate these newly-developed models; and (4) compare models' predictive ability with equations currently used to support national greenhouse gas (GHG) inventories. A total of 42 studies including 1327 individual dairy cattle records were collated. After removing outliers, the final database retained 34 studies and 610 animal records. Production and yield of CH4 were predicted by fitting mixed-effects models with a random effect of study. Evaluation of developed models and fourteen extant equations was assessed on all-data, confined, and grazing cows subsets. Feed intake was the most important predictor of CH4 production. Our best-developed CH4 production models outperformed Tier 2 equations from the Intergovernmental Panel on Climate Change (IPCC) in the all-data and grazing subsets, whereas they had similar performance for confined animals. Developed CH4 production models that include milk yield can be accurate and useful when feed intake is missing. Some extant equations had similar predictive performance to our best-developed models and can be an option for predicting CH4 production from LAC dairy cows. Extant equations were not accurate in predicting CH4 yield. The use of the newly-developed models rather than extant equations based on energy conversion factors, as applied by the IPCC, can substantially improve the accuracy of GHG inventories in LAC countries.


Asunto(s)
Dieta , Metano , Animales , Bovinos , Dieta/veterinaria , Ingestión de Alimentos , Femenino , Lactancia , América Latina , Metano/análisis , Leche/química
4.
Front Vet Sci ; 5: 201, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30234132

RESUMEN

The objective of this study was to evaluate the use of vegetable oils from plants grown in Brazil, first using the in vitro batch culture, and then evaluating the oil with methane (CH4) reducing potential in an in vivo experiment. The in vitro experiment was conducted as a completely randomized design using the seven contrasting oils. Treatments consisted of a control and 3 increasing concentrations (0, 1, 2, and 5% v/v) of oil added to a tifton 85 hay samples. All vegetable oils linearly decreased (P < 0.01) gas production after 24 h of incubation, with the greatest reduction when 5% of oil was included into the diet. Açaí and buriti had no effect of CH4 (% or mL/g DM incubated) however carrot, macaúba, basil, passionflower, and pequi oil all linearly decreased (P < 0.01) CH4 production with increasing inclusion rate of oil. Pequi oil resulted in the largest decrease in CH4 production (mL/g DM incubated) after 24 h of in vitro incubation. The objective of the in vivo experiment was to evaluate the effects of pequi oil on nutrient digestibility, CH4 production, and rumen fermentation parameters in wethers fed a hay-based diet. The experiment was conducted as a 2 × 2 Latin Square design using 4 Dorper wethers (63.4 ± 1.46 kg body weight). There were 2 experimental periods of 21 d each, with d 1-14 used for diet adaptation and d 15-21 for measurements and collections. The treatments consisted of a control diet and pequi oil fed at 70 g per animal per day. The addition of pequi oil to the diet had no effect on feed intake or the digestibility of nutrients, however there was a numerical decrease in the population of cellulolytic bacteria. There was a tendency (P = 0.06) for pequi oil addition to decrease CH4 production (g/d) by 17.5%. From this study, we can conclude that pequi oil may be used as a suitable oil for reducing CH4 production from ruminants, with no negative effects on intake or digestibility.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...